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We present an approach which enables one to identify phase synchronization in coupled chaotic oscillators
without having to explicitly measure the phase. We show that if one defines a typical event in one oscillator and
then observes another one whenever this event occurs, these observations give rise to a localized set. Our result
provides a general and easy way to identify PS, which can also be used to oscillators that possess multiple time
scales. We illustrate our approach in networks of chemically coupled neurons. We show that clusters of phase
synchronous neurons may emerge before the onset of phase synchronization in the whole network, producing
a suitable environment for information exchanging. Furthermore, we show the relation between the localized
sets and the amount of information that coupled chaotic oscillator can exchange.
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I. INTRODUCTION

The emergency of collective behavior among coupled os-
cillators is a rather common phenomenon. In nature, one
typically finds interacting chaotic oscillators which through
the coupling scheme form small and large networks. Surpris-
ingly, even though chaotic systems possess an exponential
divergency of nearby trajectories, they can synchronize due
to the coupling, still preserving the chaotic behavior �1–3�.
Indeed, synchronization phenomena have been found in a
variety of fields as ecology �4�, neuroscience �5–7�, economy
�8�, and lasers �9–11�.

In the last years some types of synchronization have been
reported �12�. A rather interesting kind is a weak synchroni-
zation, namely phase synchronization �PS�, that does not re-
veal itself directly from the trajectory, but as a boundedness
of phase difference between the interacting oscillators. In
such a synchronization the trajectories can be uncorrelated,
and therefore, the oscillators present some independence of
the amplitudes, but still preserving the collective behavior.

This phenomenon can arise from a very small coupling
strength �13�. It has been reported that it mediates processes
of information transmission and collective behavior in neural
and active networks �14�, and communication processes in
the human brain �15,16�. Its presence has been found in a
variety of experimental systems, such as in electronic circuits
�17,18�, in electrochemical oscillators �19�, plasma physics
�20�, and climatology �21�.

In order to state the existence of PS, one must introduce a
phase ��t� for the chaotic oscillator, what is not straightfor-
ward. Even though the phase is expected to exist to a general
attractor, due to the existence of the zero Lyapunov exponent
�12�, its explicit calculation may be impossible. Actually,
even for the simple case of coherent attractors, it has been
shown that phases can be defined in different ways, each one
being chosen according to the particular case studied. How-
ever, all of them agree for sufficiently coherent attractors
�22�.

In spite of the large interest in this field, there is still no
general, systematic, and easy way to detect the existence of
this phenomenon, mainly, due to the fact that the phase is
rather difficult �often unknown� to calculate. The calculation

becomes even harder if the oscillators are noncoherent, e.g.,
the funnel oscillator �12�. Therefore, in order to present a
general approach to detect PS, with practical applications,
we must overcome the need of a phase.

In many cases the phase can be estimated via the Hilbert
transformation or a wavelet decomposition �12�. Supposing
that it is possible to get a phase, the approach developed in
Ref. �23� gives rather good results. It is grounded on the idea
of conditional observations of the oscillators. Whenever the
phase of one of the oscillators is increased by 2�, we mea-
sure the phase of the other oscillators. The main idea is that
if one has PS, the distribution of these conditional observa-
tion in the phase presents a sharp peak, and therefore PS can
be detected.

There are a few approaches that try to overcome the dif-
ficulties of not having a general phase. For periodically
driven oscillators, there is an interesting approach, very use-
ful and easy to implement that overcomes the need of a
phase, the stroboscopic map technique. It consists in sam-
pling the chaotic trajectory at times nT0, where n is an inte-
ger and T0 is the period of the driver. The stroboscopic map
was used to detect PS �12,18,20�. The basic idea is that if the
stroboscopic map is localized in the attractor, PS is present.
Actually, the stroboscopic map is a particular case of the
approach of Ref. �23�. Indeed, since the driver is periodic,
the observation of the trajectory of the chaotic oscillators at
times nT0 is equivalent to observe the oscillators at every
increasing of 2� in the phase of the driver. Furthermore, if
the chaotic oscillator presents a sharp conditional distribu-
tion, this means that the stroboscopic map is localized. The
advantage of such an approach is that it does not require the
introduction of a phase neither in the periodic oscillator nor
in the chaotic one.

In the case of two or more coupled chaotic oscillators,
namely � j and �k, the stroboscopic map techniques can be
no longer applied. However, if the oscillators are coherent
and have a proper rotation, a generalization of the strobo-
scopic map has been recently developed �24�. Instead of ob-
serving the oscillators at fixed time intervals, multiples of the
period, one can define a Poincaré section in � j and then
observe �k every time the trajectory of � j crosses the
Poincaré section. If the oscillators are in PS, these observa-
tions give place to a localized set.
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Another approach that is relevant to the present problem
is the one developed in Ref. �25�. This approach consists of
defining a point x j�t��� j and a small neighborhood of this
point composed by points x j�ti��� j, where i=1, . . . ,N, with
N being the number of points within the defined neighbor-
hood. Then, one observes the oscillator �k at the times ti,
which gives place to the points xk�ti���k. Again, the idea is
that if the oscillators present synchronization, the cloud of
points xk�ti� occupies an area much smaller than the attractor
area. Further, estimators have been introduced to quantify the
amount of synchronization �25�.

Even though the intuition says that localized set implies
the presence of synchronization, there is a lack of theoretical
analysis showing such a result for a general oscillator. More-
over, as far as we know, there are no results that guarantee
that such an approach works for multiple time-scale oscilla-
tors. In addition, it is not clear what kind of points �events�
could be chosen, and finally, how one should proceed in the
case that the small neighborhood of the point x j�t��� j has
infinitely many neighbor points.

In this work, we extend the ideas of Refs.
�12,18,20,24,25�. We show that all these approaches can be
put in the framework of localized sets. Our results demon-
strate that for general coupled oscillators � j and �k, if one
defines a typical event in � j and then observes the oscillator
�k whenever this event occurs, these observations give rise
to a localized set in the accessible phase space if PS exists.
These results can be applied to oscillators that possess mul-
tiple time scales as well as in neural networks. As an appli-
cation, we analyze the onset of PS in neural networks. We
show that in general neural networks one should expect to
find clusters of phase synchronized neurons that can be used
to transmit information in a multiplexing and multichannel
way. Finally, we relate the localized sets from our theory to
the information exchange between the coupled chaotic oscil-
lators.

The paper is organized as follows: In Sec. II we define the
dynamical systems we are working on. In Sec. III we give a
result that enables the identification of PS without having to
measure the phase. We illustrate these findings with two
coupled Rössler oscillators in Sec. IV. For oscillators pos-
sessing multiple time scales our main results are discussed in
Sec. V, and then illustrated in Sec. VI for bursting neurons
coupled via inhibitory synapses. Our results are also applied
to neural networks of excitatory neurons in Sec. VII. We
briefly discuss how to apply these ideas into high dimension
oscillators and experimental data series in Sec. VIII. Finally,
we analyze the relation between the localized sets and the
transmission of information in chaotic oscillators in Sec. IX.
Moreover, in the Appendix we prove the main theorem of
Sec. III about the localization of sets in PS.

II. BASIC SET UP

We consider N oscillators given by first order coupled
differential equations,

ẋi = Fi�xi� + �
j=1

N

CijH j�x j,xi� , �1�

where, xi�Ri
n, and Fi :Rni→Rni, H j is the output vector

function, and Cij is the coupling strength between j and i.

Note that Cij could also depend on the coordinates and on
time. From now on, we shall label the coupled oscillator xi
by subsystem �i. Next, we assume that each � j has a stable
attractor, i.e., an inflowing region of the phase space where
the solution of � j lies. Further, we assume that the subsystem
� j admits a phase � j�t�. Therefore, the condition for PS be-
tween the oscillators � j and �k can be written as

�m� j�t� − n�k�t�� � c , �2�

where n and m are integers, and the inequality must hold for
all times, with c being a finite number. For a sake of sim-
plicity, we consider the case where n=m=1, in other words
1:1 PS. Herein, we suppose that a frequency � j can be de-
fined in each subsystem � j, such that

�̇ j = � j�x1, . . . ,xN,t� , �3�

where � j is a continuous function bounded away from zero.
Furthermore there is a number M such that � j �M. This
phase is an abstract phase in the sense that it is well defined,
but we are not able to write the function � j for a general
oscillator. We also consider the frequencies �̇ j not to be too
different, such that, in general, through the coupling PS can
be achieved.

III. LOCALIZED SETS IN PS STATES

In this section we present our main result. The basic idea
consists in the following: Given two subsystems �k and � j,
we observe �k whenever an event in the oscillator � j hap-
pens. As a consequence of these conditional observations, we
get a set Dk. Depending on the properties of this set one can
state whether there is PS.

The conditional observations could be given by a
Poincaré section, if it is possible to define a Poincaré section
with the property that the trajectory crosses it once per cycle
in a given direction. We wish to point out that in this case,
one is able to have more information about the dynamics and
the phase synchronization phenomenon. As an example, one
can introduce a phase, and estimate the average frequency of
the oscillators. However, these techniques based on the
Poincaré section �12,24� cannot be applied to attractors with-
out a proper rotation, where such a section cannot be well
defined.

Our main result overcomes the need of a Poincaré section.
We show that one can use any typical event to detect PS.
Such events may be the crossing of the trajectory with a
small piece of a Poincaré section �when it is possible to
define such a section�, the crossing of the trajectory with an
arbitrary small segment, the entrance of the trajectory in an
�-ball, and so on. The only constraint is that the event must
be typical �we shall clarify what we mean by typical, later
on� and the region where the event is defined must have a
positive measure. Let �tk,j

i �i�N be the time at which the ith
event in the subsystem �k,j happens. Then, we construct the
set

Dk � �i�NFtj
i
�xk

0� , �4�

where xk
0 is the initial point within the attractor of �k. Next,

we define what we understand by localized set.
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Definition 1. Let D j be a subset of 	 j. The set D j is
localized in 	 j if there is a cross section 
 j and a neighbor-
hood � j of 
 j such that D j �� j =�.

An illustration of the definition is given in Fig. 1.
Under the assumptions of Sec. II, the following result

connects the existence of phase synchronization with the lo-
calization of sets the D.

Theorem 1. Given a typical event, with positive measure,
in the oscillator � j, generating the times �tj

i�i�N. The obser-
vation of �k at �tj

i�i�N generates a localized set Dk if there is
PS.

This result constitutes a direct generalization of ap-
proaches of Refs. �24,25�. As a consequence, this result
sheds a light into the problem of PS detection, which turned
out to be a rather difficult task, depending on the system
faced. Therefore, PS can be detected in real-time experi-
ments and in data analysis by verifying whether the sets D
are localized, without needing any further calculations.

Connection between D and unstable periodic orbits

In this section we investigate the mechanism for the non-
localization of the sets D. We let the event definition be an
entrance in an �-ball in both subsystems, with � being the
radius. When � is small enough, we can demonstrate that PS
leads to the locking of all unstable periodic orbits �UPO�
between the subsystems.

Proposition 1. If the set Dk is localized, then all UPOs
between �k and � j are locked.

Proof. We demonstrate this result by absurd. Let us as-
sume that there is PS; as a consequence the set Dk is local-
ized. Suppose that there is a UPO, regarded as X j in � j, and
another UPO, regarded as Xk in �k, and that they are not
locked �there is no rational number that relates both frequen-
cies�. So, there is a mismatch between the frequencies of the
two UPOs. Given an � j-ball around y j

0 �respectively, yk
0�,

where y j
0�X j �respectively, yk

0�Xk�, any point x j distant � j
from y j

0, where � j�� j, follows d�F j
t�x j� ,F j

t�y j
0���� j, for any

t� t̃� ln�� j /� j� /
max, where 
max is the largest eigenvalue
associated with the orbit X j, and d�· , · � is a metric. An initial
condition inside the � j-ball is governed by the UPO X j until
a time t� t̃, see Fig. 2 for an illustration.

Next, we construct the set Dk by sampling the trajectory
of �k whenever the trajectory � j enters in the �-ball, which is

equivalent to observe �k every period of the UPO X j. There
is a one-to-one correspondence �isomorphism� between the
dynamics of the conditional observations and the dynamics
of the irrational rotation in the unitary circle, R� :S1→S1,
R�=e�	−1z, where � is the frequency mismatch between the
two UPOs, here given by

� = infa,b
a � �Xj
− b � �Xk

� , �5�

where �Xj,k
is the angular frequency of X j,k. This means that

the points of Dk will be dense around the UPO Xk, and
therefore, the set Dk is not localized; there is no PS that
contradicts our assumption. Indeed, since ���0, it is im-
possible to bound the phase difference between � j and �k by
a finite number. Thus, in order to have localized sets D, all
UPOs must be locked. �

This shows that the mechanism for the nonlocalization of
the sets D will be the existence of unlocked UPOs between
� j and �k. Similar results have been pursued for periodically
driven oscillators, �12�. Right at the desynchronization some
UPOs become unlocked and the stroboscopic map becomes
nonlocalized, and some phase slips happen, generating an
intermittent behavior. The duration of the phase slips are
related to the number of unlocked UPOs. Of course, in this
regime the set D is a nonlocalized set. However, if one looks
for finite time intervals the set D may be apparently local-
ized.

IV. COUPLED RÖSSLER OSCILLATORS

We first illustrate this result for two coupled Rössler os-
cillators, given by

ẋ1,2 = − �1,2y1,2 − z1,2 + ��x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + 0.15y1,2,

ż1,2 = 0.2 + z1,2�x1,2 − 10� , �6�

with �1=1 and �2=�1+��2. In such a coherent oscillator,
we can simply define a phase tan �i=yi /xi, where i=1,2,
which provides an explicity equation for it. Indeed, taking
the derivative with respect to time

�

��i
tan��i� � �̇i =

d

dt

yi

xi
, �7�

which can be written as sec2��i���̇i= �ẏixi−yiẋi� /xi
2, which

provides

FIG. 1. �Color online� An illustration of the Definition 1. The set
D j does not intersect the neighborhood � j, therefore, D j is a local-
ized set of 	 j.

FIG. 2. Illustration of the dynamics near a UPO.
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�i�t� = �
0

t ẏixi − ẋiyi

xi
2 + yi

2 dt , �8�

noting that sec2 �i= �xi
2+yi

2� /xi
2. In a more compact notation,

we consider xi= �xi ,yi�, then Eq. �8� can be written as

�i�t� = �
0

t ẋi ∧ xi

�xi�2
dt , �9�

where ∧ represents the vectorial product. Equation �9� can be
used to calculate the phase of the oscillators �i, and there is
PS if ��=�2−�1 remains bounded as t→�.

In order to apply our results we may define an event oc-
currence in both oscillators. We define the event in oscillator
�1 to be the trajectory crossing with the segment

S1 = 
x1,y1,z1 � R�x1 � − 13,y1 = 0, and y1̇ � 0� ,

�10�

the crossings generate the times �t1
i �i�N. The event in the

oscillator �2 happens whenever its trajectory crosses the seg-
ment,

S2 = 
x2,y2,z2 � R�x2 � 5,y2 = 10, and y2̇ � 0� , �11�

the crossings generates the times �t2
i �i�N. Then, the set D2,1 is

constructed by observing the oscillators �2,1 at times
�t1,2

i �i�N.
For �=0.001 and ��2=0.001, the set D1 spreads over the

attractor of �1 �Fig. 3�a��, and D2 spreads over the attractor
of �2 �Fig. 3�b��. Therefore, there is no PS, i.e., the phase
difference �� diverges �Fig. 3�e��. Indeed, a calculation of
the frequencies shows that 
�̇1�=1.034 79 and 
�̇2�
=1.035 08. As we increase the coupling, PS appears. In par-
ticular, for �=0.011 and ��=0.001, the sets D1 and D2 are
localized �Figs.3�c� and 3�d�, respectively�. Hence, the phase
difference is bounded �Fig. 3�f��. The average frequency is

�̇1�= 
�̇2�=1.035 22.

Estimating the synchronization level

Our main goal is to state the existence of PS, however, we
can also estimate the synchronization level between � j and
�k by means of the localized sets. This can be done by in-
troducing an estimator Hjk. One way to estimate the amount
of synchrony is to define

Hjk =
�vol of D j�

�vol of the attractor of � j�
, �12�

where vol denotes the volume �26�. If there is no PS, the set
D j spreads over the attractor of � j, see Figs. 3�a� and 3�b�,
then, Hij =1. As the oscillators undergo a transition to PS, Hjk
becomes smaller than 1. The lower Hjk is the stronger the
synchronization level is �27�.

For attractors with the same topology as the Rössler os-
cillator, Hjk can be easily calculated. Instead of computing
the volume, we calculate the area occupied by the attractor in
the plane �x ,y�. The area Aj of the attractor of � j can be
roughly estimated by the area of the disk with radii rm and

rM, see Fig. 4. Thus, Aj =��rM
2 −rm

2 �. On the other hand, the
set � j is confined into an angle � �Fig. 4�. Therefore, the area
of the set D j can be estimated as ��rM

2 −rm
2 � /2. Thus, the

estimator can be written as

Hjk =
�

2�
. �13�

We have used Eq. �13� to estimate the amount of synchro-
nization between the two coupled Rössler of Eq. �6�. We fix
�=0.001 and vary the mismatch parameter �� within the
interval �−0.002,0.002�. For ��� � �0.0009 the coupled
Rösslers phase synchronize, which means that the set D j is
localized. Therefore, Hjk�1. The smaller the value of ���� is

FIG. 3. �Color online� PS onset in two coupled Rössler oscilla-
tors. In �a,c� we depict the attractor of the oscillator �1 and in �b,d�
the attractor of �2 in light gray, the sets D are depicted in black.
The bars on �a� and �c� represent the segment S1, while in �b� and
�d� the segment S2. In �a� and �b� the sets D1 and D2 spread over
the attractor of the oscillator �1 and �2, respectively; and there is
no PS, the phase difference diverges �e�. The parameters are �
=0.001 and ��=0.001. In �c� and �d� the sets D1 and D2, respec-
tively, are localized and there is PS; the phase difference is bounded
�f�. The parameters are �=0.011 and ��=0.001.

FIG. 4. �Color online� Illustration of a localized set in a Rössler-
like attractor. The attractor can be approximated by a disk with
major radius rM and minor radius rm. The sets D are confined
within an angle �.
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the more localized the set D j becomes, meaning that the
oscillators are more synchronized, leading Hjk to low values.
At ��� � =0 the two coupled oscillators present their strongest
synchronization with Hjk�0.22. The results are depicted in
Fig. 5.

V. OSCILLATORS WITH MULTIPLE TIME SCALES

In oscillators with only one time scale, i.e., one typical
period, a typical event means an event possible to realize,
thus with positive measure. In oscillators with multiple time
scales, i.e., oscillators that possess more than one typical
period �an oscillator with fast and slow variables�, a typical
event means an event that takes into account all time scales.
Conversely, an atypical event is the one that takes into ac-
count just a few time scales, e.g., only one. In such an oscil-
lator with multiple time scales, one may have synchroniza-
tion only in one time scale, while the others may be
asynchronous. If the event definition excludes completely the
dynamics of the synchronized time scale this event is atypi-
cal and one does not observe localized sets through it. In
order to clarify these ideas, we consider two instructive ex-
amples.

A. Dynamics on a torus

Let us consider a quasiperiodic motion on a torus T2 with
two independent frequencies � and �, i.e., n�−m��0
∀n ,m�Z. The dynamics on the torus �k :T2→T2 can be
characterized by the angular variables and the flow takes the
form �k= �u ,v�= ��t+�0 ,�t+�0�. Furthermore, we consider
another oscillator on a quasiperiodic torus with two indepen-
dent frequencies � and �, the flow � j :T2→T2, in angular
variables, takes the form � j = �g ,h�= ��t+ �̃0 ,�t+�0�.

Therefore, under this construction one sees PS in only one
time scale, since � ,� are independent.

If we consider the event in the oscillator �k to be the
increasing of 2� on the variable u, conversely the crossing in
the section �, it generates the times tk

i =2�� i /�. The obser-
vation of � j at these times generates a localized set D j,
which will lay on S1, a subset of T2=S1�S1, and will never
occupy the full space. On the other hand, if we consider the
event in the oscillator � j to be the increasing of � on the
variable h, conversely the crossing with the section �, the set
Dk will not be localized, since � ,�, and � areindependent.

Therefore, one must define an event that captures the dy-
namics of the synchronized time scale. In the pictorial ex-
ample of Fig. 6 any other piece of section that is a linear
combination of � and � provides typical events.

B. Spiking/bursting dynamics

An interesting situation is when the time scales present a
relationship, which is the case for spiking and/or bursting
oscillators. Consider two spiking and/or bursting neurons N j
and Nk. They have distinct time scales, the bursting scale,
with low frequencies, and the spiking scale, with high fre-
quencies.

The spiking scale consists of the action potentials �28�
which occur due to the exchange of ions like K+ of the ex-
ternal media with the neuron. On the other hand, the neuron
may also exchange slow current like Ca+2 which inhibits the
occurrence of spikes generating the bursts. An event defined
by the occurrence of a burst defines simultaneously the be-
ginning and the ending of a spike train. Therefore, even
though spikes and bursts may have independent frequencies,
the burst occurrence is also determined by the occurrence of
the first and last spike within the burst.

It has been reported that it is possible to have PS in the
bursting scale while the spiking scale is not synchronized
�6�. Therefore, in order to analyze the existence of synchro-
nization between the neurons, by means of standard tech-
niques, the spiking and bursting scales must be separately
analyzed. Our method detects PS independently on the time
scale that the event is defined; if one time scale is synchro-
nous one finds localized D sets. In order to illustrate this
result we may take the following example. Assume that the
bursting scales are strongly synchronized. This means that if
neuron N j ends the ith burst at a time tj

i, the neuron Nk ends

FIG. 5. Hjk is depicted for the two coupled Rösslers, Eq. �6�,
with �=0.001. The estimator Hjk is computed by means of Eq. �13�,
whenever Hij =1 there is no PS. At ��� � �0.0009 the coupled
Rösslers undergo a transition to PS, and therefore, Hjk�1, which
shows the presence of PS.

FIG. 6. �Color online� Illustration of two possible sections on
the torus T2. In �a� the section � takes into account only the dy-
namics of �, the synchronized scale. In �b� on the other hand, the
dynamics of the synchronized time scale is ruled out on the section
�. Therefore, using this particular section one cannot observe local-
ized sets D, since the synchronized time scale is not taken into
account.
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the ith burst at a time tk
i = tj

i +�i, where �i�O����O�1�.
Next, consider that within any burst in neuron N j there are
always two spikes equidistant in time. Let us denote � j

n the
time at which the nth spike occurs in N j. In neuron Nk there
are two spikes within a burst and with a probability pk a third
spike may occur �Fig. 7�a��. Under this construction, it is
clear that the spiking scales are not synchronized.

We can verify this by applying the same approach as in
Refs. �6,12�. We define a threshold for the burst occurrence,
the dotted gray line in Fig. 7�a�. Then for every burst we
assume that the phase � is increased by 2� and between two
bursts the phase increases linearly. So, the phase for the neu-
ron Nk can be written as

�k�t� = 2� � �i +
t − tk

i

tk
i+1 − tk

i � . �14�

A similar equation can be written for N j. Note only that at a
time t, the neuron N j may present m bursts. So, the phase

difference ��� � = ��k�t�−� j�t�� is equal to �2���i+
t−tk

i

tk
i+1−tk

i �
−2���m+

t−tj
m

tj
m+1−tj

m��. Now bringing the fact that �tk
i − tj

i �
�O���, we have

���� � 4� . �15�

Therefore, the phase difference is bounded. On the spiking
scale the situation is different; there is no synchronization.

Doing the same procedure, we introduce a phase � that is
increased by 2� between two successive spikes. Thus, the
phase for the neuron Nk can be written as

�k�t� = 2� � �n +
t − �k

n

�k
n+1 − �k

� . �16�

A naive computation in the limit t→� shows that ��� �
� pkn. Hence, there is, of course, no synchronization on the
spiking scale.

Next, we construct the set D j observing the neuron N j
every time that an event happens in the neuron Nk. First, we
fix the event to be the ending of a burst, see Fig. 7�a�. As we
observe N j at tk

i all the points of D j will be close to the end
of the burst. So, the set D j does not spread over the attractor,
see the gray points in Fig. 7�b�. However, the set D j is also
localized even if we set the event to be the occurrence of a
spike. Since the spikes always occur within a burst, even
though the spikes themselves are not synchronized, the tra-
jectory related to the hyperpolarization period will not be
visited, and therefore, the set D j will be localized, see the
black circles in Fig. 7�b�.

VI. NEURONAL DYNAMICS

Next, we study the appearance of PS between two spiking
and/or bursting neurons of the Hindmarsh-Rose �HR� type.
In such an oscillator the introduction of a phase is rather
difficult, since the neurons are noncoherent. We couple the
neurons via inhibitory synapses, which introduces noncoher-
ence in both time scales. This happens because when one
neuron spikes it inhibits the other neuron, which hyperpolar-
izes, but the neuron that has been inhibited still tries to spike.
This competition generates even more noncoherence in both
time scales. Therefore, we consider this model as a proper
example to illustrate our results.

In the four-dimensional HR model �5,29� neurons are de-
scribed by a set of four coupled differential equations,

ẋk = ayk + bxk
2 − cxk

3 − dzk + Ik + gsynCIsyn�x� ,

ẏk = e − yk + fxk
2 − gwk,

żk = ��− zk + R�xk + H�� ,

ẇk = ��− kwk + r�yk + l�� , �17�

where xk represents the membrane potential of the neuron
Nk, yk is associated with fast currents exchange and �zk ,wk�
with slow currents dynamics, Isyn�x�= (Isyn�x1� ,
Isyn�x2� , . . . , Isyn�xN�) is the synaptic input vector and Isyn�xj�
is the synaptic current that neurons N j �post-synaptic� injects
in Nk �presynaptic�, and C= 
ckj� is the N�N connectivity
matrix where ckj =1 if neuron N j is connected to neuron Nk,
and ckj =0, otherwise, with j�k. This model has been shown
to be realistic, since it reproduces the membrane potential of
biological neurons �30�, and it is able to replace a biological
neuron in a damaged biological network, restoring its natural
functional activity �31�. It also reproduces a series of collec-

FIG. 7. �Color online� In �a� we present the time series of the
membrane potential of two neurons Nk and N j in light gray and
black, respectively. We show the threshold, in dashed line, for the
burst occurrence, and in light gray dots, for the spike occurrence.
While the bursting scale is synchronized the spiking scale is not.
However, both scales can be used to construct the sets D and they
will be localized due to the synchronization in the bursting scale. In
�b�, we show the set Dk constructed using the spiking scale �black
circles� and the set Dk constructed using the bursting scale �black
squares�. As one can see both are localized.
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tive behaviors observed in a living neural network �5�. The
parameters of the model are the same as in Ref. �5�, but the
intrinsical current Ik. We change Ik in order to obtain a spik-
ing and/or bursting behavior and we use it as a mismatch
parameter. First, we consider two neurons N j and Nk. In the
following, we consider the parameters Ik=3.1200, Ij
=3.1205, and gsyn=0.85.

The chemical synapses �32� are modeled by

Isyn�xj� = S�t��xrev − xj� ,

�1 − S��xi���Ṡ�t� = S��xi� − S�t� , �18�

where xj is the post-synaptic neuron, xrev is the reversal po-
tential for the synapse, and � is the time-scale governing the
receptor binding. S� is given by

S��xi� = �tanh� xi − xth

xslope
� if xi � xth,

0 otherwise.
� �19�

The synapse parameters are xth=−0.80, xslope=1.00, xrev
=−1.58. They are chosen in such a way to obtain an inhibi-
tory effect in the chemical synapse.

To construct the sets D, we define the event occurrence.
We shall analyze two situations: when the event is defined in
the bursting scale, and when the event is defined in the spik-
ing scale. First, we define the ith event to be the ith crossing
of the membrane potential of the neuron N j,k with the thresh-
old xb=−1.3 in an upwards direction. We denote the time
events by tj,k

i . Note that this threshold assigns to the times tj,k
i

the beginning of the ith burst of N j,k. Figure 8�a� shows the
time series of the membrane potential of the neurons N j,k.
The threshold xb=−1.3 is depicted with the dashed line, and
it is chosen in such a way that it does not define a proper
Poincaré section, which means that not all the bursts cross it,
see Fig. 8�a�. Actually many bursts are missed. Thus, the
approach to extract the phase considering the increasing of
2� between two bursts, misleads the statement of PS. That is
so, because in this approach the phase is threshold depen-
dent. Therefore, by using Eq. �14�, we get that PS does not
exist, which is crucially wrong �note that, with the increasing
of the threshold value PS would appear�. However, our ap-
proach, which is not threshold dependent, overcomes these
difficulties. Indeed, localized sets exist even for this thresh-
old �Fig. 8�b��.

Conversely, if we increase the threshold level in such a
way that it takes into account the spike occurrence, e.g., a
threshold at xs=1.1, the dashed line in Fig. 8�c�, the former
approach, as in Eq. �16�, completely fails to state PS, due to
the fact that the spikes are not in PS. Furthermore, the spikes
are highly noncoherent. The competition between the two
neurons generates a damping in the spikes in the beginning
of the burst, followed by an increasing and then decreasing
in the spike frequency �Fig. 8�c��. Again, since the threshold
xs=1.1 defines a typical event, the observation of N j,k at
times �tk,j

i �i�N provides localized sets D �Fig. 8�d��.

VII. EXCITATORY NEURAL NETWORKS

The ideas introduced herein are also useful to analyze the
onset of synchronization in networks. We consider a network
of 16 nonidentical HR neurons, regarded as Ni where i
� �1, . . . ,16�, connected via excitatory chemical synapses.
The mismatch parameter is the intrinsic current Ii. Since the
meaningful parameter is Ii=3.12, for which the HR neuron
best mimics biological neurons, we introduce mismatches
around this value for all the neurons within the network.
Thus, given a random number �i uniformly distributed
within the interval �−0.05,0.05�, we set Ii=3.12+�i. The ex-
citatory synapses are modeled by Eqs. �18� and �19�. To ob-
tain the excitatory effect we change the value of xrev. If xrev
�xi�t�, the presynaptic neuron always injects a positive cur-
rent in the post-synaptic one. Since the maximum spike am-
plitude is around 1.9, we set xrev=2.0.

Our network is a homogeneous random network, i.e., all
neurons receive the same number k of connections, namely
k=4, see Fig. 9�a�. We constrain gsyn �see Eq. �17�� to be
equal to all neurons. We identify the amount of phase syn-
chronous neurons by analyzing whether the sets Di are local-
ized.

The onset of PS in the whole network takes place at
gsyn

* �0.47; so all neurons become phase synchronized. As
the synapse strength crosses another threshold, g̃syn�0.525,

FIG. 8. �Color online� PS between two HR neurons coupled via
inhibitory synapses. We analyze the effect of different threshold
levels on the detection of PS. We depicted the attractor projection
�x ,y� in gray, and the set Dk in black, for �b� and �d�. In �a� the time
series of the membrane potentials �full lines� and the threshold xb

=−1.3 �dashed line� are depicted. In �b� the set Dk, construct by
means of the threshold xb, is localized; showing the presence of PS.
The time series of the membrane potentials �full lines� and the
threshold xs=1.1 �dashed line� are depicted in �c�. The spikes are
not in PS. With our method, even for this threshold one can obtain
a localized set. In �d�, the set Dk construct by using the threshold
xs=1.1 is localized.
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the neurons undergo a transition to the rest state no longer
presenting an oscillatory behavior. Clusters of PS appear for
gsyn�gsyn

* . In fact, right at gsyn�0.04, some PS clusters ap-
pear �Fig. 10�a��. Again, the clusters are identified by analyz-
ing the localized sets. These clusters seem to be robust under
small perturbations.

Clusters of PS inside the network may offer a suitable
environment for information exchanging. Each one can be
regarded as a channel of communication, since they possess
different frequencies, each channel of communication oper-
ates in different bandwidths. To see the bandwidths in the
network, we analyze the variance in the average bursting
time of the neurons. Since only the burst scale is synchro-
nized, we are just interested in the average bursting time,
which can be straightforwardly estimated with a fast Fourier
transformation �FFT� �33�. So, given the neuron N j, we label
its bursting average time by 
Tj�. Then, we compute the vari-
ance of the average time on the ensemble of neurons. For

this, we first introduce the average time of the whole net-
work, which is given by

� =
1

n
�
j=1

n


Tj� . �20�

Thus, the variance of the average time on the ensemble of
neurons is readily written as

� =
1

n
�
j=1

n

�
Tj� − ��2. �21�

So, � indicates how diverse are the bandwidths. As one can
see in Fig. 10�b�, when the first clusters appear for gsyn
�0.04, we have ��0 indicating that the whole network is
working almost with the same frequency. A further increas-
ing of gsyn causes the destruction of these clusters and an
increasing of �. However, even in the regimes of high � with
gsyn� �0.27,0.34�, there is the formation of clusters.

This scenario of cluster formation is neither restricted to
this HR model nor to the synapse model. It can also be found
in square-wave and parabolic bursters, and it is in general
achieved quite before the onset of complete synchronization.
For example, we use a more simplified HR model given by
ẋj =axj

2−xj
3−yj −zj −gsyn�xj −xs�CIsyn�x� , ẏ= �a+��x2−y , ż

=��bx+c−z�, with the parameters a=2.8, �=1.6, c=5, b
=9, �=0.001; C being the connectivity matrix and Isyn�x�
= (Isyn�x1� , . . . , Isyn�xN�) a fast threshold modulation as synap-
tic input given by

Isyn�xj� = 1/
1 + exp�− ��xj −  ��� , �22�

with �=10 and  =−0.25. As before, gsyn is the synaptic
strength and the reversal potential xs�xj�t� in order to have
an excitatory synapse. For a homogeneous random network
of nine identical HR neurons, with k=3 �Fig. 9�b��, the
theory developed in Ref. �34� predicts the onset of complete
synchronization at ḡsyn�0.425, while we found that PS in
the whole network is already achieved at gsyn

* �0.36. Clus-
ters of PS, however, appear for a much smaller value of the
coupling strength, actually at gsyn�0.03. Next, we apply the
same procedure as before and we compute the variance of
the average bursting time on the ensemble of neurons within
the network. The result ��gsyn is depicted in Fig. 11, the
inset numbers indicate the amount of clusters.

As we have pointed out, such clusters are rather suitable
for communication exchanging mainly for two reasons: �i�
They have different frequencies, therefore, each cluster may
be used to transmit information in a particular bandwidth,
which may provide a multiplexing processing of informa-
tion. �ii� The clusters of phase synchronous neurons provide
a multichannel communication, that is, one can integrate a
large number of neurons �chaotic oscillators� into a single
communication system, and information can arrive simulta-
neously at different places of the network. This scenario may
have technological applications, e.g., in digital communica-
tion �37,38�, and it may also guide us towards a better un-
derstanding of information processing in real neural net-
works �15,16,39�.

FIG. 9. Networks generated randomly. In �a� n=16 and k=4,
while in �b� n=9 and k=3.

FIG. 10. The appearance of PS clusters within the network. In
�a� we show the number of clusters as a function of the synaptic
strength. In �b� we plot the normalized �*, where �*=� /112.8.
Note that when the clusters are formed � becomes small, but
bounded away from zero, which means that the neurons within the
network undergo a transition where they have almost the same
frequency.
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VIII. DETECTION OF PS FOR HIGHER DIMENSIONAL
SYSTEM

It is easy to say whether the set D is localized in a two-
dimensional plane; this could be done, for example, by visual
inspection. In multidimensional system it might not be obvi-
ous whether the set D is localized. This is mainly due to the
fact that in a projection of a higher dimensional system onto
a low dimensional space, the set D might fulfill the projected
attractor. Therefore, the analysis of the localization might
have to be realized in the full attractor of the subsystem.

The analysis is also relatively easy if we bring about a
property of the conditional observation. Whenever there is

PS, the conditional observation, given by F j
tk
i

�x j
0�, is not to-

pologically transitive �35� in the attractor of � j, i.e., D is

localized. The conditional observations F j
tk
i

�x j
0� are topologi-

cally transitive in the attractor A j of � j �36� if for any two
open sets B ,C�A,

∃tk
ni/F j

tk
ni
�B� � C � � . �23�

To check whether D j is localized, we do the following. If
there is PS, for y j �D j it exists infinitely many x j �A j such
that

y j � B��x j� = � , �24�

where B��x j� is an open ball of radius � centered at the point
x j, and � is small. We may vary y j and x j to analyze whether
it is possible to fulfill Eq. �24�. Whenever this is possible, it
means that the set D j does not spread over the attractor of � j,
and therefore, there is PS.

For analysis of PS basing on experimental data �11,18,20�
where the relevant dynamical variables can be measured, so
that the phase space is recovered, our approach can be used
straightforwardly. If one just has access to a bivariate time
series, one first must reconstruct the attractors, and then pro-
ceed the PS detection by our approach.

IX. INFORMATION TRANSMISSION

In this section, we analyze the relationship between the
sets D and the capacity of information transmission between
chaotic oscillators. In order to proceed such an analysis, we
may assume that the oscillators are identical or nearly iden-
tical. Such that the synchronized trajectories are not far from
the synchronization manifold, i.e., the subspace where x j
=xk �2,3�. Next, for the sake of simplicity we consider only
oscillators whose trajectory possess a proper rotation and are
coherent �22,38�, e.g., the standard Rössler oscillator. How-
ever, the ideas herein can be extended to other oscillators as
well.

The amount of information that two systems � j and �k
can exchange is given by the mutual information I�� j ,�k�
�40�,

I�� j,�k� = H�� j� − H�� j��k� , �25�

where H�� j� is the entropy of the oscillator � j and H�� j ��k�
is the conditional entropy between � j and �k, which mea-
sures the ambiguity of the received signal, roughly speaking
the errors in the transmission.

As pointed out in Ref. �14� the mutual information can be
also estimated through the conditional exponents associated
to the synchronization manifold. The mutual information is
given by

I�� j,�k� = � 
�
+ − � 
�

+ , �26�

where 
�
+ are the positive conditional Lyapunov exponents

associated to the synchronization manifold, the information
produced by the synchronous trajectories, and 
�

+ are the
positive conditional Lyapunov exponents transversal to the
synchronization manifold, related with the errors in the in-
formation transmission. In PS 
�

+ can be small, which means
that one can exchange information with a low probability of
errors. So, PS creates a channel for reliable information ex-
changing �14�. In general, we expect �
�

+��
+, where 
+

are the positive Lyapunov exponents. Thus I�� j ,�k���
+

−�
�
+ . In order to estimate an upper bound for I�� j ,�k�, we

need to estimate 
�
+ , what can be done directly from the

localized sets.
The conditional transversal exponent can be estimated

from the localized sets by a simple geometric analysis. At the
time tj

i the oscillator � j reaches the Poincaré plane at x j
*

while the oscillator �k is at xk
i =xk�tj

i�. The initial distance
between the trajectories is �x jk=x j

*−xk
i . This distance

evolves until the time tk
i when the oscillator �k reaches the

Poincaré plane at xk
*, while the trajectory of � j is at x j

i

=x j�tk
i �. The new distance is �x̃ jk�tk

i − tj
i�=xk

*−x j�tk
i �. There-

fore,we have

�x̃ jk = �x jke

�

+ �tk
i −tj

i �. �27�

So, the local transversal exponent is given by


�
+ = lim

N→�

1

N
�
i=1

N
1

�tj
i − tk

i �
ln� x j

* − xk
i

xk
* − x j

i � , �28�

where we use the convention 0� ln 0=0. Of course, we only
estimate the conditional exponent close to the Poincaré

FIG. 11. The average bursting time on the ensemble of neurons.
We plot the normalized �*, where �*=� /12. The inset numbers
show the amount of clusters for a given parameter gsyn.
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plane. Hence, if we change the Poincaré plane the condi-
tional exponent may also change, i.e., there are some events
that carry more information than others.

Example with Rössler oscillators. We illustrate this ap-
proach for two coupled Rössler oscillators. We set the pa-
rameters to a=0.15, b=0.2, c=10, � j =1, and ��k=0.0002.
As shown in Ref. �14� at ��0.05, the two oscillator undergo
a transition to PS. In particular, for �=0.06 we have �
�

+

�0.06. We estimate �
�
+ at this situation by means of Eq.

�28�. We set the Poincaré section at yj,k=0, and compute 
�

for 65 000 cycles, i.e., 65 000 crossing of the trajectory with
y=0 and ẏ�0. We get 
��0.048. Note that we are not

computing �
�
+ , but rather, the maximum 
�

+ , namely 
̃�
+ .

Therefore, it is natural to expect 
�
+ to be smaller than �
�

+ .
However, the upper bound to the information exchange can

be estimated by I�S ,R���
+− 
̃�
+ , that is, the maximum

amount of information that can flow through the coupled
oscillators if we encode the trajectory using the Poincaré
plane y=0 �37�. Furthermore, it seems that when the level of

synchronization is large, the estimation of 
̃�
+ , by means of

Eq. �28�, might become problematic, due to strong fluctua-
tions in �tj

i − tk
i �−1 ln���x j

*−xk
i � / �xk

*−x j
i� � �.

X. CONCLUSIONS

We have proposed an extension of the stroboscopic map,
as a general way to detect PS in coupled oscillators. The idea
consists in constraining the observation of the trajectory of
an oscillator at these times in which typical events occur in
the other oscillator. This approach provides an efficient and
easy way of detecting PS, without having to explicitly cal-
culate the phase. We have shown that if PS is present, the
maps of the attractor appear as a localized set in the phase
space. This has been illustrated in coherent oscillators, the
coupled Rösslers, as well as in noncoherent oscillators, spik-
ing and/or bursting neurons of HR type coupled with chemi-
cal synapses. As we have shown in neural networks, the ap-
pearance of clusters of PS is rather common, which may be
relevant for communication mainly due to two aspects: �i�
The clusters provide multiplexing information processing,
namely each cluster may be used to transmit information
within a bandwidth. �ii� They provide a multichannel com-
munication, that is, a large number of neurons is integrated
into a single communication system. Moreover, we have ana-
lyzed the relation between the information exchanging and
the localized sets. We have roughly estimated the errors in
the information transmission from the localized sets.
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APPENDIX: PROOF OF THEOREM 1

In this appendix we prove the Theorem 1. It is instructive
to give a sketch of the proof, in order to have a better under-

standing of the result. We split the demonstration into the
following four steps: �i� We show that the increasing of 2� in
the phase � j,k defines a smooth section ! j,k on � j,k, which
does not intersect itself. �ii� We show that observing the os-
cillator � j whenever oscillators �k crosses !k gives place to
a localized set D j. �iii� Further, we show that the observation
of � j whenever �k crosses a piece P!k

of the section !k also
gives place to a localized set. �iv� Using these results we
show that, actually, the localized sets can be constructed us-
ing any typical event. To show this, we only note that given
a typical event with positive measure, we can choose P!k

to
be close to the event occurrence, implying that shortly before
or shortly after every event occurrence, a crossing of the
trajectory with P!k

will happen. Thus, if we observe � j when-
ever the event occurs in �k we will have a set that is close to
the D j, and therefore, localized. Next, we formalize the heu-
ristic ideas. Let us introduce i= j ,k.

Proposition 2. The increasing of 2� in �i�t� generates a
smooth section !i in the attractor of �i, which does not in-
tersect itself.

Proof. First, let us introduce the times ��i
m� such that

�i��i
m�=m�2�. Then, let !i be the set of points such that

given the initial point xi
� we have the section

!i = 
�m�Nxi
m�xi

m = Fi
�i

m

�xi
��� . �A1�

Thus, we construct a section !i. !i is smooth since both �i
and Fi

t are smooth. Indeed, given two points xi
0 ,xi

1�!i, with

d�xi
0 ,xi

1���, there is a r�1 such that Fi
�i

r

�xi
0�, Fi

�i
r

�xi
1��!i,

and

d„Fi
�i

r

�xi
0�,Fi

�i
r

�xi
1�… � � . �A2�

Furthermore, we can construct a continuous section !i, by
conveniently choosing points xi

�. The fact that !i does not
intersect itself comes from the uniqueness of Fi

t �41�, and
from the fact that the �̇i�t��0, which implies that the phase
is a one-to-one function with the trajectory. Note that, obvi-
ously, this section depends on the initial conditions. �

Lemma 1. The observation of the oscillators � j whenever
the trajectory of �k crosses the section !k gives place to a
localized set D j if, and only if, there is PS.

Proof. Let " j be the Poincaré map associated to the
section ! j, such that given a point x j

n�! j, so x j
n+1=" j�x j

n�
=Fj

��j
n+1

�x j
n�, where �� j

n # � j
n−� j

n−1. From now on, we use a
rescaled time t�= t / 
Tj�, with 
Tj�=limi→� � j

i / i. For a slight
abuse of notation we omit the prime. There are numbers $i
such that ��i

i− i
Ti� � �$i, where, by time reparametrization,
$i�1. If both oscillators are in PS, then 
Tk�= 
Tj�, and so

��k
n − � j

n� � $̃ , �A3�

with $̃�$k+$ j�1 �42�. Now, we analyze one typical oscil-
lation, using the basic concept of recurrence. Given the fol-
lowing starting points xk

0�!k and x j
0�! j, we evolve both

until x j
0 returns to ! j. Let us introduce

��n = �� j
n − ��k

n, �A4�

which gives
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F j
��j

1

�x j
0� = " j�x j

0� = x j
1 � ! j . �A5�

Analogously,

Fk
��j

1

�xk
0� = Fk

��k
1+��1

�xk
0� = Fk

��1
� Fk

��k
1

�xk
0� .

Bringing the fact that Fk
��k

1

�xk
0�="k�xk

0�=xk
1, we have

Fk
��j

1

�xk
0� = Fk

��1
�xk

1� . �A6�

Now, by using the fact that ���i � �$̃, we can write

Fk
��1

�xk
1� � xk

1 + G�xk
1�$̃ + O�$̃2� . �A7�

So, given a point xk�!k evaluated by the time when the
trajectory of � j returns to the section ! j, the point xk returns
near the section !k, and vice versa. Therefore, it is localized.
For a general case, we must to show that a point, in the
section !k, evolved by the flow for an arbitrary number N of
events in the oscillator � j, still remains close to !k, in other
words, it is still localized. This is straightforward, since
��i=0

N ��i � = ��k
N−� j

N � �$̃. So, we demonstrated that the PS re-
gime implies the localization of the set Dk.

Now, we show that the localization of the set Dk implies
PS. Supposing that we have a localized set Dk, so, Eq. �A3�
is valid, by the above arguments. Therefore, we must only
show that Eq. �A3� implies PS. With effect, we have �� j�t�
−�k�t� � = ��0

t � jdt−�0
t �kdt� which is equal to ��0

�j
n

� jdt

−�0
�j

n

�kdt+�
�j

n
t

� jdt−�
�j

n
t

�kdt�. This may be written as

��0
�j

n

� jdt−�0
�k

n

�kdt−�
�j

n
�k

n

�kdt+�
�j

n
t

� jdt−�
�j

n
t

�kdt�. Next, noting

that �i��i
n�=2��n, we get

�� j�t� − �k�t�� � M�� j
n − �k

n� + 2�M , �A8�

where �=max � ti
n− ti

n−1�. Therefore, if the time event differ-
ence �tj

n− tk
n� is bounded it implies the boundedness in the

phase. Thus, we conclude our result. �

Proposition 3. Let �� j
ni�ni�N be the times at which the tra-

jectory � j crosses a piece P!j
of ! j. If there is PS, then the

observation of the trajectory of �k at times �� j
ni�ni�N gives

place of a localized set.
Proof. Note that the observation of the trajectory of �k at

times �� j
i�i�N gives place to a set Dk, while the observations

at times �� j
ni�ni�N give place to a subset D̃k of Dk. Therefore,

whenever Dk is localized, it implies the localized of D̃k. �
Now, we are ready to prove the Theorem 1.
Proof. Let the event be the entrance in an �-ball, such that

the event occurrence produces the time series tj
i, in � j. There

is, at least, one intersection of this ball with the section ! j.
Since ! j depends on the initial conditions, we can choose an
initial condition right at the �-ball event. Next, we choose
P!j

such that it is completely covered by the �-ball. Since the
measure of the �-ball is small, ��1, the time difference
between crossings of the trajectory with P!j

and the �-ball is
small, thus, there is a number ��1 such that �see Fig. 12�

tj
i − � j

ni � O��� . �A9�

Therefore, if we observe the trajectory of �k at times �tj
i�i�N,

we have a localized set in �k. Thus, we conclude our result:
The observation of the trajectory of � j,k whenever typical
events in �k,j occurs generates localized sets D j,k if, and only
if, there is PS. �
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